您的位置:广东在线游戏网 > 游戏策略 > 微型核电池的特点-微型核电池有哪些优越性?

微型核电池的特点-微型核电池有哪些优越性?

作者:广东在线游戏网日期:

返回目录:游戏策略


微机电系统和纳米技术的研究在过去20年取得了巨大的进展, 研究者们开发了各种类型的微米和纳米尺度的器件。然而, 能量供给装置很难微小型化到相应尺度传统的电池或能量供给装置仍然用于微米和纳米器件, 这导致了整个系统体积增大、频繁充电或电池单元组布置的困难因此, 研究者们自20世纪90年代起开始将目光转向开发各种微型电池的技术上。其中, 基于涡轮燃烧的微型能量产生装置和微型燃料电池的目标是将机械能、热能和化学能转化成电能。这些技术都需要外部的微流体结构和外部能源驱动发动机并供给燃料到工作腔中, 或者促成化学反应实现能转换。微型铿电池也在研究当中, 但是这类电池能量密度低, 寿命短研究热点之一的还有微型太阳能电池阵列, 其缺点在于需要光作为原始能源。放射能可以在工业、农业和医疗服务等许多不同的领域可以得到应用, 能量产生是其最重要的应用领域这是因为核能在许多场合都是比常规能量产生形式更高效的能量产生方法。
1999年美国威斯康星大学麦迪逊分校的研究者在美国能源部的资助下在国际上首先提出了结合微机电系统技术和核能科学与技术, 开展微型核电池或称放射性同位素电池的研究, 随后在美国国防部的资助下, 继续在美国康乃尔大学开展工作。 包括厦门大学萨本栋微机电研究中心在内的国内外许多研究小组也开始致力于这项研究当中。与其他技术相比, 微型核电池在许多领域具有应用前景, 特别是在需要长期时间功能的应用场合, 如植入式生物医疗微器件与用于环境监测的微型传感器或传感器网络放射性同位素的能量密度比化石或化学燃料的能量密度高了一倍, 并且若选择合适的放射性同位素, 可以实现长寿命的微型核电池。
空间研究机构,像美国的国家航空航天局(NASA)很久以前就已认识到放射性材料在发电方面的巨大潜力。NASA早在从20世纪60年代开始的一系列太空任务中,例如旅行者号探测器(Voyager)和不久前发射的,目前正在环绕土星轨道上运行的卡西尼探测器(Cassini),采用了放射性同位素热电子发电机(Radioisotope Thermoelectric Generators,RTG)。这些空间探测器离太阳太远,因此无法使用太阳能电池阵列供电。
RTG通过热电效应(亦称赛贝克-Seebeck-效应)将热能转化成电能。所谓赛贝克效应是指当加热一根金属棒(由两种金属或半导体材料对接而成-译者注)的一端时,受热端的电子就获得了较多的动能流向另一端,在该金属棒的两端产生电压。NASA使用的RTG多数像洗衣机大小,利用钚-238的高能射线产生巨大的热能。
但RTG无法大幅度降低尺寸。对于MEMS这样的微型设备,其表面积和其体积之比非常大。很大的相对表面积使得热量损失问题难以解决,而要维持RTG的正常工作,就必须保一定的温度。因此我们不得不寻找其他办法来把核能转化为电能。
2003年初,开发了一种微型电池,可以把放射性物质发射的高能粒子直接转化成电流。在这种电池里面,把少量的镍-63放在普通的硅p-n结(基本上就是一个二极管)附近。镍-63衰变时会发射β粒子。β粒子是一种从放射性同位素不稳定的原子核里自发的发射出来的高能电子。在电池中,β粒子使二极管的原子电离,产生电子-空穴对。这些电子和空穴被分割在p-n结界面的两边。这些被分离的电子和空穴向离开p-n结的方向流动,形成了电流。
在上述应用中采用镍-63非常理想,因为它发射的β粒子在蜕变之前最多在硅材料中能行进21μm。如果某种粒子具有更大的动能,那么它的行进距离将更长,这样就会辐射到电池外面。在我们制作的核电池中,每毫居里的镍-63能产生3毫微(10-9)瓦的功率。虽然功率不大,但是已经可以为其他机构正在研发的环境传感器和战场传感器上所使用的纳米存储器和简单的微处理器供电。 放射性同位素的选择是实现微型核电池的最重要的方面, 主要是基于辐射类型, 安全性、能量、相对比放射性、价格和半衰期。使用放射性同位素最重要的考虑因素始终是安全性。Gamma射线(伽马射线)具有很强的穿透能力, 需要相当大的外部屏蔽装置以减小放射剂量比。Alpha(阿尔法)粒子可以用于在半导体产生电子一空穴对, 但是它们会引起严重的晶格缺陷。纯的Beta射线发生器是微e69da5e6ba907a686964616f330型核电池的最佳选择。表1给出了我们研究中考虑用于微型核电池的纯Beta放射源。镍-63具有超过100年的放射期, 在我们的研究中作为首选。从镍-63发射出的粒子或电子, 具有淤的平均能量和的最高能量, 这低于引起硅晶体结构永久性损伤
的200~250KeV闽值能量。另一方面, 最高运动能量67KeV的电子无法穿透人类皮肤的外层, 这保证了操作者的安全。 所开发的第一种类型的微型核电池是基于Beta辐生伏打效应, 即由于电子空穴对(EHPs)产生的正电荷流动, 从而形成电势差。如图1所示, 当EHPs扩散进入半导体pn结的耗尽区, 在pn结内建电场的作用下,实现对电子-空穴对的分离, 即电子向n区, 空穴向p区运动, 产生电流输出。
虽然辐生伏打效应与光生伏打效应类似, 微型核电池的开发比太阳能电池的开发要困难得多。主要原因在于核电池中的电子通量密度比太阳能电地中的光子通量密度要低。对于微电池而言, 由于使用了非常低放射强度的同位素, 电子通密度还会降低。从Beta放射性同位素放射出来的电子的能分布通常真有很宽的频谱范围。带有不同能的电子会停留在半导体pn结器件不同深度的位里。因此, 产生的EHPs的空间分布是不同的。为了获得更高的能量输出, 需要对pn结器件进行优化设计, 并采取微制造工艺达到尽可能将EHPs收集到耗尽层的目的。 事实上, 大多数微机电和纳米器件, 与低耗能电子器件, 所消耗的能量在毫瓦范围内。为了增加微型核电池的能物出, 如果允许, 应该选择高能量放射器具有更高的放射强度虽然枢放射性同位素的半衰期只有2.6年, 但其平均能为62KeV, 最高能量为250KeV, 这在硅基pn结器件中是允许的。如图5所示,设计并制作了应用-钷147放射性同位素作为原始能源的Beta型微型电池。作为电池的平面pn结器件的10mm*100mm面积为, 并且使用了约200mCi的钜-147。测得的开环电压0.29V, 短路电流为0.033mA。最大输出能量为5.7uW。下一步的工作是应用堆盛或芯片阵列连接的方法提高微型电池的输出电压。
两种应用于微机电系统和纳米器件的微型核电池, 并给出了利用钷-147放射性同位素实现输出能达到毫瓦级的Beta型微型核电池。



韩国《朝鲜日报》报道称,过去在电池的研发过程中面临的重大难关之一,就是为了提高性能,电池大小往往比产品本身还大。但权载完教授组研发出的核电池只是略大于1美分硬币(直径1.95厘米,厚1.55毫米),却可以发出普通化学电池需充电100万次才能发出的电力。
权载完教授还实现了用于电池的芯片的改革。使用核电池时发出的放射能可能会损坏电池内部的固体芯片结构,但权载完利用液体芯片,最大限度地克服了这一问题。权载完向BBC电台表示:“核能可用于心脏搏动调节装置或人造卫星等,已经可以安全地用于人们的生活。”
只需要一个硬币大小的电池,就可以让你的手机不充电使用5000年。
美国密苏里大学研发团队开发出的微型“核电池”使用某种液态半导体,在带电粒子通过时并不会对半导体造成损伤,所以他们得以进一步小型化电池。负责该项目的Jae博士称,虽然人们总是闻“核”色变,但实际上核动力能源早就被应用在例如心脏起搏器、太空卫星和海底设备等多种安全供电项目上.


现在随着移动互联网的深入发展手机已经成为人们手中必备的一款电子产品,但是现在比较头痛的问题就是手机电池的续航问题依旧让很多网友感觉头痛,现在的手机基本上都是一天一充电非常麻烦,虽然现在都在说石墨烯电池但是已经这么久了还是没有看见石墨烯电池的影子。
  这让很多网友想起来之前有人提到过的微型核电池,这种理念是在1999年被科学家提出来的也不算是什么新鲜的概念了。这种电池的工作原理其实是说得通的,但是因为涉及到核电方面让很多人担心这款电池就算是真的出来那安全不安全,人们永远将自己的安全性放在第一位。这款电池区别于核电站核裂变生称的电能。所谓的微型核电池,其实并不是利用核裂变转化为电能的原理,而是利用放射性同位素的衰变来产生能量。
  像这位网友提到的20年不断电的核电池,应该是此前外媒提到的一种民用氚电池,产电的原理根本不需要经过热量转换。这种电池使用的所谓“核原料”是氢的同位素氚,它的原子核由一个质子和两个中子构成,又被称为超重氢。
  这是一种放射性物质,会发生β衰变,放出高速移动的电子,即β射线,同时转变成氦3。这种电池就是直接利用氚的衰变产生的β射线,让这些高速电子射入半导体中,从而产生了微弱的电流。
  具体原理来说,氚在β衰变中,原子核内一个中子转变为一个质子,同时释放一个电子,即β粒子。氚放出的高能电子束在穿过窗口通道后进入捕获层,在通过p-n结的有效区域期间,半导体材料内部电子将被β粒子激发到激发态,形成电子-空穴对,由于p-n结内部的内建电场作用,电子和空穴将被分离到p-n结两端,从而形成宏观电压。如果在p-n结两段形成回路的话就产生了电流。
  由于这个机制类似于光生伏特效应,所以才用β衰变作为能量源的核电池也被称为贝塔伏特电池。同时由于氚的半衰期长达12.43年,因此这种电池可以在长时间内持续提供电池。但它产生的电流不大,只适合应用于那些耗电较低但需要超长时间不间断供电的场合,比如内置医疗设备的供电,以及军事或者太空e69da5e6ba90e799bee5baa6e997aee7ad94333用途。
  为何无法量产?
  那么既然是有可行性的,那么目前为何没有见到量产的核电池呢?
  1、首先便是安全性上,“核”这个词,大家已经不是很陌生了,在很多新闻中也都见过,比如“核电站爆炸”啦,“核弹将毁灭人类”啦,“核泄漏制造出了新怪物”啦,似乎“核”就是危险的代名词一般,在核电站附近的居民甚至会达到谈“核”色变的程度。
  而正是由于人们对于核能潜意识里的忌惮,也就导致了核能的民用进展一直以来都非常缓慢,所以即便在实验室中已经实现了核电池的研发,科学家依然要对其进行漫长的安全评估,同时还要用更长的时间去进行宣传,以消除人们的疑虑。如果没有做好安全评估,那么恐怕即便是量产了,也不会有人敢用。引用一条比较有趣的段子:“普通电池发热:我去要没电;核电池发热:我去要炸!”
  2、其次还是安全性,我们知道,核电池想要应用在手机中,是有尺寸限制的,即便目前的核电池避开核裂变,利用放射性同位素的核衰变,来减小其危险性,但是对于手机这种耗电量不大的设备来说,会导致核能释放的能量只能在有限的空间内释放出来,从而造成热量不能及时转换或导出,那么随着时间的积累,极有可能发生电池破裂或爆炸的危险。
  3.另外,依然是因为安全性,在同位素的选择上,虽然目前在自然界探明或人造的放射性同位素很多,但基于辐射类型、辐射安全性、能量稳定性、半衰期和价格等因素的考虑,科学家目前仍未找到令人满意的材料,所谓的氚,也不过可以看成是过度元素而已。
  4、最后,小编想说的是,别看电池......一款手机,你真的可以用20年吗?这能续航20年的核电池,会不会有些太浪费了?

《《《《终身不用充电的微型核电池终身不用充电的微型核电池终身不用充电的微型核电池终身不用充电的微型核电池》》》》::::1.微型核能电池还无法像普通化学电池那样在我们的日常生活中得到普遍的应用。2.承上启下。由上文写通过“挖井”的方法提高微型核能电池的效率,缩小电池体积过渡到下文写科学家就此研究的其他方法。3.①在硅上弄出许多坑(或“挖井”);②改用其他材料作芯片(如碳化硅、液体芯片);③叠放芯片。4.“一旦”表示时间的不确定,说明微型核能电池仍在研究中,将来有可能会在我们的日常生活中得到广泛应用。“一旦”体现了说明文语言的准确性。5.这句话运用了列数字的说明方法,具体准确地说明了科学家在硅上弄出的坑(也就是“深井”)之小

相关阅读

关键词不能为空

标签导航

微信登录新设备需要验证 但是验证不了怎么办? 微信在新手机登陆需要验证但是验证不了怎么办? 微信在新手机登陆需要验证但是验证不了怎么办 微信安全登录验证不了,怎么办? DNF85版本魔皇刷图技能怎么加点? DNF魔皇刷图点怎么加 要狠 dnf驭剑士怎样加刷图技能点? dnf中魔皇刷图技能怎么加? 港行的iphone7和国行什么区别 iphone7plus港版和国行有什么区别 港行的iphone7和国行什么区别? iphone7plus国行港行有区别么? 新人求助ipad版模拟人生怎么创建新市民 ipad版的模拟人生怎么让一位市民去另一名市民的家啊 iPad模拟人生免费版怎么让第一个建立的市民回家? ipad模拟人生3中为城镇添加一名市民 微型核电池的特点 什么是微型核电池? 微型核电池的应用展望 微型核电池的研究情况 高尔夫球杆杆身硬度8s是什么意思 高尔夫球杆的详细介绍 高尔夫球杆R是什么意思 高尔夫球杆硬度如何选 dnf男气功装备附魔问题 DNF男气功附魔 DNF男气功装备附魔宝珠魔法攻击好还是智力宝珠好? DNF男气功武器到底需要附魔光属性攻击吗? 摘抄关于读书的文章500字 美文摘抄300字 赏析 阅读短文,完成下面的练习:我们任何人在这个世界上都不是孤立存... 关于局长吃鱼的读后感 魔兽世界怎么显示怪物头上的血条? 魔兽世界怎么显示怪物数字血量 魔兽世界怎么显示怪物的血量 魔兽世界怎么关闭NPC血条 只显示友方玩家血条 求高达SEED系列中所有人物及机体详细资料 求高达SEEd中所有机体的名字及所属驾驶员!!! 高达seed和高达seed destiny 的所有机体中英文... 求高达SEED两部里所有的机体名称(不要详细,只要有名字就行... DNF元素师和魔道学者哪个厉害? DNF魔道学者和元素师哪个最牛逼,pk和刷图都厉害的是哪个? DNF中,魔道学者和元素师哪个更厉害 DNF魔道学者和元素师哪个刷图给力适合平民? lol薇恩打法和攻略 LOL薇恩走哪路?玩法技巧 LOL vn攻略打法是什么? 传奇世界lol薇恩打法和攻略 所有系列高达的名字!求列,求图! 高达!我想收集全部图片和名称! 高达seed所有高达的名字和图片都来几张 天使系列高达所有的名字及图片 DNF魔道学者的PK技巧,和连招 DNF魔道学者怎么PK!