返回目录:游戏攻略
“纳米机器人”的研制属于分子仿生学的范畴,它根据分子水平的生物学原理为设计zd原型,设计制造可对纳米空间进行操作的“功能分子器件”。纳米生物学的近期设想,专是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米属机器人。
百度百科有!!
纳米机器史诗级《划时代》《科学技术革命》在《纳米机器人》中加入了许多名字,究竟有多少点是真实的,有多少点是奇怪的? 现实和科幻有多大的差距?没错,就是这么神奇。为了回答这些疑问,今天就来谈谈纳米级机器人的“真面目”吧!
关于纳米机器人,最初从“尺寸”的观点出发定义为“0.1微米~10微米以内的微机器”。之后,科学家们扩展了这一概念,从“功能性”中将纳米机器人定义为“操作纳米级物体的机器”。无论如何定义,制造纳米机器人是一项非常困难的任务。首先,需要小零件,可能只有头发直径的千分之一。
2016年,诺贝尔化学奖颁发给了从事“设计分子机械”的3位学者。 他们的主要工作是利用化学合成法,制作出许多开关、泵、轴等分子级的零件化学方法可以合成一系列分子级部件:典型的纳米开关图像,通过改变pH值可以控制特定分子的迁移 。
还有用于制造纳米部件的硬件技术。光刻技术主要用于芯片的制造,是一种能够实现人类掌握的少数纳米级精度的加工技术。 美国加利福尼亚理工学院的科学家可以利用光刻技术,制作出分辨率为25纳米~100纳米的复杂三维金属几何图形。 2019年,美国劳伦斯利弗莫尔国立研究所的科学家开发了“飞秒投影双光子光刻”技术,传统技术的加工速度可以提高1000倍,仅8分20秒就能印刷出芝麻大小的纳米结构,加工精度保持在纳米水平。
化学法和光刻法也制作了纳米部件,但是这些部件还需要组装到机器人上。 如何实现微尺度的组装,是“纳米机器人”研究的另一个难关。1980年代,人们实现了单原子的控制。 2005年,中国科学院成功地将4微米长、100纳米粗的碳纳米管移动到了正确的沟槽中。 但是,如何大规模地进行纳米组件是个问题。2015年,法国国立科学院的研究小组通过超分子键结合了数千个纳米机器,各个纳米机器成功发生了约1纳米的直线伸缩运动。 积累很多,这几万个小纳米机器的运动可以合并,像肌肉组织一样发生10微米的收缩扩张。
尽管如此,这些研究只是实现了“纳米部件”的简单集成,想要组装电影中针尖般的万能机器,人类还是要走很多道路。如何驱动纳米机器人?科学家们也想引起对纳米机器的关注。 他们同国际汽车联盟缔结合作协定推动纳米车大会的发展。 对于“纳米机器人”,现在看到的产品非常简单,但一部分只能说是“纳米的小零件”。 将来的某一天,生病的你可能会来医院,e79fa5e98193e58685e5aeb9361给医生开处方写上“注射5毫升的纳米机器人,喝开水吧”。
纳米机器人可以与军事领域和医学领域相结合,发挥作用。
1、军事领域
军用纳米机器人,俗称为“蚂蚁士兵”,是一种比蚂蚁还要小的靠太阳能电波驱动的具有惊人破坏力的机器人。它们可以通过多种途径潜入敌方的军事要害部门(司令部、兵工厂、元首办公室和秘密基地等)开展侦察活动,甚至直接攻击目标。
比如,用特种炸药引爆目标,破坏敌方的电子设备与电脑网络(如使其短路毁坏),施放各种化学制剂(如使金属变脆、油料凝固,或使敌方人员神经麻痹失去战斗力),甚至埋设微型地雷和充当爆破手。
这种纳米机器人还可以充当潜伏特务,平时相安无事,无声无息,一旦战事爆发,通过微型遥控装置可以诱发它们群起而攻之,迅速破坏敌方作战系统e799bee5baa6e78988e69d83334。
2、医学领域
(1)高灵敏度、精确的生物纳米结构与特性的探测技术,如疾病早期诊断的纳米传感器系统。
(2)治疗药物的纳米化以及新型药剂学的发展。
(3)结合微创医疗的精细治疗手术,如血管内的纳米机器人手术等。
扩展资料:
历史沿革:
1、纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。
2、1981年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。
3、1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等。
4、2001年,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地 。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点。
5、2010年5月,美国哥伦比亚大学的科学家成功研制出一种由脱氧核糖核酸(DNA)分子构成的纳米蜘蛛机器人,这种机器人能够跟随DNA的运行轨迹自由地行走、移动、转向以及停止,并且他们能够自由地在二维物体的表面行走。这种纳米蜘蛛机器人只有4纳米长,比人类头发直径的十万分之一还小。
参考资料来源:百度百科-纳米机器人
参考资料来源:百度百科-纳米技术
纳米机器人的定义
“纳米机器人”的研制属于分子仿生学的范畴,它根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。
[编辑本段]纳米生物学涉及的内容
纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。涉及的内容可归纳为以下三个方面:
①在纳米尺度上了解生物大分子的精细结构及其与功能的联系。
②在纳米尺度上获得生命信息,例如,利用扫描隧道显微镜获取细胞膜和细胞表面的结构信息等。
③纳米机器人的研制。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。
[编辑本段]纳米机器不久将进入我们的生活
用不了多久,个头只有分子大小的纳米机器人将源源不断地进入人类的日常生活。
它们将为我们制造钻石、舰艇、鞋子、牛排和复制更多的机器人。要它们停止工作只需启动事先设定的程序。
表面来看,上述想法近乎不可思议:一项单一的技术在应用初期就能治病、延缓衰老、清理有毒的废物、扩大世界的食物供应、筑路、造汽车和造楼房?这并非天方夜谭,也许在21世纪中叶前就可以实现。
现在,全世界的研究机构都在想方设法将这些设想变成现实。今年1月,美国总统克林顿甚至宣布成立美国国家纳米研究机构,承诺提供50亿美元进行这方面的尝试。
其实,纳米技术一词由来已久。理查德·费恩曼是继爱因斯坦之后最有争议和最伟大的理论物理学家,1959年他在一次题目为《在物质底层有大量的空间》的演讲中提出:将来人类有可能建造一种分子大小的微型机器,可以把分子甚至单个的原子作为建筑构件在非常细小的空间构建物质,这意味着人类可以在最底层空间制造任何东西。从分子和原子着手改变和组织分子是化学家和生物学家意欲到达的目标。这将使生产程序变得非常简单,你只需将获取到的大量的分子进行重新组合就可形成有用的物体。
事实上,每一个细胞都是一个活生生的纳米技术应用的实例:细胞不仅将燃料转化为能量,而且按照储存在DNA中的信息来建造和激活蛋白质和酶,通过对不同物种的DNA进行重组,基因工程家已经学会建造新的这类纳米工具,例如用细菌细胞来生产医用激素。
[编辑本段]纳米技术的其他大胆应用
纳米技术的大胆应用设想还包括:利用纳米机器将获取的碳原子逐个组织起来,变成精美的金刚石;将二氧化物分子重新分解为原来的组成部分;在人血中放入纳米巡航工具,它能自动寻找沉积于静脉血管壁上的胆固醇,然后将它们一一分解;将来纳米机器能够把草地上剪下来的草变成面包……在完全意义上讲,世上每一个现实存在的物体无论是电脑还是奶酪都是由分子组成的;
在理论上,纳米机器可以构建所有的物体。
当然从理论到真正实现应用是不能等同的,但纳米机械专家已经表明,实现纳米技术的应用是可行的。在扫描隧道电子显微镜帮助下,纳米机械专家已经能将独立的原子安排成自然界从未有的结构。此外,纳米机械专家还设计出了只由几个分子组成的微小齿轮和马达。(切勿将这些齿轮和马达与那些由数以百万计分子组成的用传统技术构建的微小齿轮和马达相混淆,这些机器同未来制造的机器相比较实在是太巨大了)。
25年内,纳米技术学家期望实现这些存在于科学陈列室中的想法,创造出真实的、可以工作的纳米机器。这些纳米机器有微小的“手指”可以精巧地处理各种分子;有微小的“电脑”来指挥“手指”如何操作。“手指”可能由碳纳米管制造,它的强度是钢的100倍,细度是头发丝的五万分之一。“电脑”可能由碳纳米管制造,这些碳纳米管既能做晶体管又能做连接它们的导线。“电脑”也可能由DNA制造,用适当的软件和足够的灵巧性进行武装的纳米机器人可以构建任何物质。
纳米机器人执行任何任务包括自身复制都必须动用大量的纳米机器。血液里可能存在数以百万计的纳米机器人;在每一个有毒废物地点可能需要数以万亿计的纳米机器人,要制造一辆汽车可能要调动数以一百亿亿计的纳米机器人同时工作。然而7a64e58685e5aeb9333没有一个生产线可以生产如此巨大数量的纳米机器人。
但是纳米科学家眼中的纳米机器可以做到这点。他们设计的纳米机器人可以完成两件事情:执行它们的主要任务和制造出它们自身完美的复制体。如果第一个纳米机器人能够制造出两个复制体,这两个复制体每个又可制造出两个自己的复制体,很快就可以获得万亿个纳米机器人。
但是,假如纳米机器人忘记停止复制会发生什么?如果没有一些内建的停止信号,纳米机器人忘记停止复制这种灾难的可能后果将会是无法计算的。纳米机器人在人体内快速复制能够比癌症扩散还要快地布满正常组织;一个发疯的制造食物机器人能够把地球的整个生物圈变成一块巨大的奶酪。
纳米技术学家没有回避危险,但是他们相信他们能控制灾难的发生。其中一个办法是设计出一种软件程序使纳米机器人在复制数代后自我摧毁。另一种办法是设计出一种只在特定条件下复制的机器人,例如只有在有毒化学物质以较高浓度出现时机器人才能复制,或者在一个很窄的温度和湿度范围内机器人才能复制。
就像电脑病毒的传播一样,所有以上这些努力都无法阻止那些不怀好意的人有意释放某种纳米机器人作为害人武器。事实上,一些批评家指出纳米技术可能的危险要大于它的益处。然而,仅仅这些利益就已经太具诱惑力了,纳米技术必将超过电子计算机和基因制药而成为新世纪的技术发展方向。世界可能会需要一个纳米技术免疫系统,这个系统中纳米机器人警察不断地在微观世界中同那些不怀好意的机器人进行战斗。
[编辑本段]中国纳米机器人显奇功
中国人也可以像摆棋子一样摆弄原子了。记者从中科院获悉,一台能够在纳米尺度上操作的机器人系统样机近日由中国科学院沈阳自动化所研制成功,并通过了国家“863”自动化领域智能机器人专家组的验收。 在一个演示中,沈阳自动化所的研究人员操纵“纳米微操作机器人”,在一块硅基片上1×2μm的区域上清晰刻出“SIA”三个英文字母(沈阳自动化所的缩写);另一个演示显示,在一个5×5μm的硅基片上,操作者将一个4μm长、100nm(纳米)粗细的碳纳米管准确移动到一个刻好的沟槽里。
纳米微操作机器人在10×10微米的基片上刻出的字样
测试显示,在刻画操作中,这台纳米微操作机器人在512个像素宽度的显示区域里,重复定位误差小于5个像素,精度达1%以上;在移动纳米碳管的操作中,重复定位精度达到30nm;而在基于路标的定位测试中,其定位误差小于4nm。 专家解释,一纳米(1nm)是10-9米,大约等于十个氩原子并列成一条直线的长度。在纳米尺度上的操作,被称为“纳米微操作”,是纳米技术的重要内容,其目的是在纳米尺度上按人的意愿对纳米材料实现移动、整形、刻画以及装配等工作。纳米微操作始于上世纪80年代,IBM的科学家1989年利用扫描式隧道显微镜(STM)操作35个氙原子在镍金属表面拼出I-B-M三个字母,成为轰动世界的新闻,开了纳米微操作先河。从此,纳米操作技术作为一个重要的战略发展方向吸引各国竞相展开研究。 该项目研究人员介绍,这台机器人系统在纳米尺度下的系统建模方法、三维纳观力获取与感知及误差分析与补偿方面有很多突破与创新,都达到世界先进水平。 据介绍,这种纳米微操作机器人可广泛应用于纳米科学实验研究、生物工程与医学实验研究、微纳米科研教学等领域。如生物学研究领域中,使用纳米微操作机器人可完成对细胞染色体的切割操作;也可在DNA或分子水平上进行生化检测及病理、生理测试实验研究。此外这种机器人在IC工业中纳米器件的装配与加工方面也有良好的应用前景,如可以利用它操作纳米微粒,装配微/纳米电子器件,甚至复杂的纳米电路。这意味着,未来利用纳米电路制成的电脑和家用电器,可以“想要它有多小,就能做多小”,甚至可以“塞进牙缝”;而未来利用纳米操作技术制作的微型机器人,也可以钻入人体替病人疏通血管,或在肉眼看不见的微观世界里,完成人们自己不可能完成的任务。
[编辑本段]一款下载/上传软件
专用于纳米盘(网络硬盘)的下载/上传软件。批量上传下载; 单次不限文件数及总大小; 支持4G的超大文件上传;(公开测试期间暂不支持) 支持断点续传; 支持http下载并贮存于纳米盘; 下载/上传速度更快;节约时间; 支持拖放式上传,操作更方便; 支持历史任务管理;