返回目录:游戏攻略
我们平时常见的机器和工具,最小能够达到的程度,是以我们的肉眼可以看见的外形为依据的。1986年,美国福赛特研究所的德雷克斯勒博士在自己的著作《创世的引擎》中提出了分子纳米技术的概念。他所说的分子纳米技术,就是使组合分子的机器实用化;从而可以任意组合所有种类的分子,并可以做出任何种类的分子结构。仅就他提倡的分子纳米技术来说,其后并未取得重大进展。他的观点是,微型机器可以利用自然界中存在的所有廉价材料制造任何东西。这种观点在专家的议论中出现,显得太离奇了。但从另一个角度看,他却揭示了一个人类在21世纪中将会大规模进军的领域——微观机器人7a64e59b9ee7ad94331领域。
自机器人间世以来,人们已一致公认机器人是“解放人类的工具”。那么,什么样的机器才称得上是机器人呢?一般说来,机器人是指靠自身动力并有控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”
机器人是一个总称,它种类繁多,按发展过程可以分为三代;第一代指只有“手”的机器人,以固定程序或可编程序工作,不具有外界信息的反馈。这种机器人也称“示教再现型”机器人。第二代对外界信息有反馈能力,具有触觉、视觉、听觉等功能,叫“感觉型”机器人,又称“适应型”机器人。第三代具有高度的适应性,有自行进行学习、推理、决策、规划等功能,这种机器人被称为“智能型”机器人。
微型机器人又称为“明天的机器人”,它是机器人研究领域的一颗新星,它同智能机器人一起成为科学追求的目标。发展微型和超微型机器人的指导思想非常简单:某些工作若用一台结构庞大、价格昂贵的大型机器人去做,不如用成千上万个非常低廉的细小而极简单的机器人去完成,这正如一大群蝗虫去“收割”一片庄稼,要比使用一台大型联合收割机快。微型机器人的发展依赖于微加工工艺、微传感器、微驱动器和微结构四个支柱。这四个方面的基础研究有三个阶段:器件开发阶段、部件开发阶段、装置和系统开发阶段。现已研制出直径20微米、长150微米的饺链连杆,以及微型的齿轮、曲柄、弹簧等。贝尔实验室已开发出一种直径为400微米的齿轮,在一张普通邮票上可以放6万个齿轮和其他微型器件。德国卡尔斯鲁核研究中心的微型机器人研究所,研究出一种新型微加工方法,这种方法是X射线深刻蚀、电铸和塑料膜铸的组合,深刻蚀厚度是。10~1000微米。
微型机器人的发展,是建立在大规模集成电路制造技术的基础上的。微驱动器、微传感器都是在集成电路技术基础上用标准的光刻和化学腐蚀技术制成的。不同的是集成电路大部分是二维刻蚀的,而微型机器人则完全是三维的。微型机器人和超微型机器人已逐步形成一个牵动众多领域向纵深发展的新兴学科。
微型机器人可以在原子级水平上工作。例如,外科医生能够遥控微型机器人做毫米级视网膜开刀手术,在眼球运动的条件下,进行切除弹性网膜或个别病理细胞,接通切断的神经,在病人体内或血管中穿行,发现癌细胞立即把它们杀死以及刮去主动脉上堆积的脂肪等。用微型机器人胃镜可以放进胃内对胃进行全面检查。
微型机器人的作业能力达到了分子、原子级水平,已远远超过了艺术家在头发丝上作画的程度了。微型机器人还可以用于精密制造业的加工,用它制造存储量更大的电脑存储芯片,以及加工精度极高的“超平面磨床”等。
应用微型机器人技术,可以便各种各样的航天测量变得更为轻巧,磁带录音机之类的家用电器也会变得更加小巧和多用,电视屏幕可以做得既大又薄,其上各点的光亮度,可以用微型机器人自动控制。微型机器人也将使机械学发生一场革命。
微型和超微型机器人的应用领域非常广阔,它可以用于航海、农业;通信、航空航天、家庭和医疗等方面。例如:扔下成千上万个微型机器人去咀嚼轮船底部的贝类和苔藓,能节省航行能源。将成千上万个微型机器人撒在土豆地内,让它们去咬死害虫,使土豆有好收成。飞行微型机器人载着湿度仪和红外传感器在田野上飞翔,当发现农田有干旱现象时,便降落在灌溉系统的阀门上,将干旱信息传输给传感器,打开阀门,定量灌溉农田。
微型机器人可以携带摄像机和微型光纤,进入人类无法到达的地方去观察环境,存储或传输图像。当地下电缆断了以后,让成千上万个微型机器人沿着屯缆爬行,爬到断头时,便让双手搭在前端断头上,于是微型机器人便成为连接导线,永久留在电缆上。
微型机器人可以清洁、修理空间望远镜,检查宇宙飞船热屏蔽罩,给飞机机罩除冰。如果将大量的飞行微型机器人部署在其他星球上,机器人则可以发回各种所需的信息。
每天晚上可以放出微型机器人在商店和仓库附近放哨,防止盗窃者进入。微型机器人还可以在住房隐蔽处除尘,进入家用电器内部检查和维护。
微型机器人能力的评价标准有:智能,指感觉和感知,包括记忆、运算、比较、鉴别、判断、决策、学习和逻辑推理等;机能,指变通性、通用性或空间占有性等;物理能,指力、速度、连续运行能力、可靠性、联用性、寿命等。因此,可以说微型机器人是具有生物功能的空间三维机器。
尽管迄今尚未出现智能微型机器人,但是大部分的机器人研究机构的科学家都认为到2040年,智能微型机器人将达到人的智力水平,也许还能达到人的意识水平。然后,智能机器人会得到进一步改进。人与机器之间最终将建立一种共生关系,两者合并为能够大大扩展智力的“后生物体”。美国麻省理工学院人工智能专家马文·明斯基预见到未来的智能机器人:人将把大脑的思维下载给计算机控制的机器替身,形成几乎无限的信息和数据。这种状况标志着人类一个新的开发阶段的开始。
另有一种微型机器人,是由东芝公司和名古屋大学制造的。这个只有1.5厘米大小的微型机器人是靠液体压力驱动橡皮制成的动作器而自由行动的,这种微型机器人不带供给能源的缆线,可在内径只有6毫米的细管内移动,且今后可能发展成为在血管中自行移动,是一种能治疗或诊断疾病的微型机器人。
对于微型机器人,有的科学论著把其说成是一个模仿人,的动作的微型机器,其实不完全如此。美国麻省理工学院电动机工程师阿尼塔·弗林研制成功了一台精密型机器人,它借助自身的动力,能爬行、步行、跳跃、旋转,而且还具有视觉锐利、听觉灵敏、感觉准确的特点。现在科学家们正试图研制超微型机器人。他们预言,到2l世纪这种超微型机器人如果研制成功,它可以像红细胞那样注入人体内,从溶解在血液内的葡萄糖和氧气中获得能量,并按照编好的程序,探试、辨识、过滤、清除人体内的病毒,保持肌体的健康。1994年8月,美国麻省理工学院的专家们开始研制高4毫米的带马达的微型机器人。据他们估计,这种微型机器人由于非常微小,能进入人体做手术,再用十几年时间,这种机器人就能试制成功,投人生产和使用。
将来的纳米机器人可以合成你想要的任何东西,科学家设想在未来纳米机器人的帮助下,我们甚至可以从因特网上下载硬件。这是迈特公司纳米技术权威詹姆斯·埃伦博根作出的预测。该公司是五角大楼资助的、设在弗吉尼亚州麦克莱思的一家研究中心。
埃伦博根对他提出的下载硬件的景象作了引人入胜的解释:“人们可以想一想当今下载软件是什么情形,是以改变分子团磁性特征的方式重置磁盘的物质结构。如果计算机的内容不超过分子团的体积,就可以通过重新排列磁盘上的分子制造芯片。”埃伦博根说,研究人员已经忙于研制体积只有针头大小的计算机,“这种纳米计算机的各个部件比我们现今用在磁盘驱动器上装载信息的物理结构小得多。因此,在不久的将来,我们将能够像今天下载软件一样从网络里下载硬件。”
从物理意义上再生产一些硬件下载产品将需要新的磁盘驱动器。一种设想是用极为尖细的点束制造一种读写磁头,以某种方式刺激原子和分子。利用十年来在扫描隧道电子显微镜及相关技术方面取得的研究成果,分别由斯坦福大学的卡尔文·奎特和康奈尔大学的诺埃尔·麦克唐纳领导的两个科学家小组从事这方面的研究。
埃伦博根说:“一旦我们掌握了制造体积不超过盐粒大小的计算机的技术,我们就会从根本上处于一种新的形势。”体积如此微小的计算机将非常便宜,因而随处都可使用计算机。嵌在内衣里的计算机将告诉洗衣机应当用什么水温洗涤内衣。圆珠笔笔芯中的墨水即将用完的时候,嵌在笔中的计算机将提醒你更换笔芯。嵌在鞋里的计算机将向汽车发出信号,把主人走过来的信息通知汽车,让汽车调整好座位和反光镜并打开车门。
科学家设想了一个叫做“纳米盒”的东西,来实现上面的下载硬件的想法。这是一种把纳米制造技术与现今所谓的台式制造方法相结合的未来复印机。如果你需要一部新的蜂窝电话,你可以通过网络购买一种制作蜂窝电话的方法。它将告诉你插入一个塑料片,把导电分子注入“色粉”盒中。纳米盒将把塑料片来回移动,记下分子的形式,然后通过一定方法指引分子自行组装成电路和天线。下一步是,纳米盒利用不同的“色粉”加上号码键、扬声器和麦克风,最后制造外壳。
不要指望在2020年以前能出现这种精巧的小装置,下载纳米级计算机电路的试验最早不会早于2005年。在随后的10年中,纳米制造系统可能用于“写物质”一初步生产纳米芯片。
纳米技术的一个分支分子电子学已经朝着实现这个目标取得了具体的进展。由洛杉矶加利福尼亚大学和惠普实验室科学家组成的研究小组找到了一种由分子自行组装的所谓的逻辑门。惠普实验室研究人员菲利普·库克斯说,这个研究小组下一步的目标是缩小芯片上的线路,旨在生产出“单边为100纳米的芯片”。他还说:“目前的芯片生产成本之所以非常昂贵,是因为生产机械需要有极高的精确度。但是采用化学方法制造,我们可以像柯达公司生产胶片那样,生产出长卷,然后只需切成小块就行了。”
这样的设想引起了华盛顿的兴趣。美国国防高级研究计划局已经实施了一项分子电子学研究计划。国会似乎急切地想大大增加纳米技术的研究经费。一项计划将使纳米技术的研究经费在今后几年中翻一番。白宫可能也会表示赞成,因为白宫已经把纳米技术列为11个关键研究领域之一。
迈特公司埃伦博根领导的研究人员在最近取得的新成果是设计出一种用于组装纳米制造系统的微型机器人。目前设计出的这种机器人的长度约为5毫米。但是,假设能利用纳米制造技术使这种机器人的体积不断缩小,它最终的体积可能不会超过灰尘的微粒。
体积微小的机器人能够像纳米技术的倡导者埃里克·德雷克斯勒设想的那样,用于操纵单个原子。德雷克斯勒在1986年出版的《创世的引擎》一书中对纳米技术的潜在用途作了一番引人入胜的描述。应该说是德雷克斯勒开创了纳米技术时代,并启发人们作出如下的种种设想:成群的肉眼看不见的微型机器人在地毯上或书架上爬行,把灰尘分解成原子,使原子复原成餐巾、肥皂或纳米计算机等诸如此类的东西。
虽然用原子制造计算机仍然是一个相当遥远的梦想,但是埃伦博根认为很快能取得研究成果。他说:“我敢打赌,分子电子学近期内能获得突破。”这似乎是为纳米技术下的一个大胆的赌注。
假如我们能够制造一个纳米机器人,但是我们要知道物质世界里的原子数是数不胜数的,经过简单计算,即使这个机器人能以每秒抄10亿个原子的速度全速生产,还是几乎毫无用处,因为一个纳米机器人哪怕只生产一小批产品也要花费数百万年的时间。尽管从科zd学角度而言这样的纳米机器人装配工很有吸引力,它本身在宏观的“现实”世界里却不会有多大用处。
[编辑本段]纳米机器人的定义
“纳米机器人”的研制属于分子仿生学的范畴,它根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。
[编辑本段]纳米生物学涉及的内容
纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。涉及的内容可归纳为以下三个方面:
①在纳米尺度上了解生物大分子的精细结构及其与功能的联系。
②在纳米尺度上获得生命信息,例如,利用扫描隧道显微镜获取细胞膜和细胞表面的结构信息等。
③纳米机器人的研制。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。
[编辑本段]纳米机器不久将进入我们的生活
用不了多久,个头只有分子大小的纳米机器人将源源不断地进入人类的日常生活。
它们将为我们制造钻石、舰艇、鞋子、牛排和复制更多的机器人。要它们停止工作只需启动事先设定的程序。e68a84e8a2ade79fa5e98193333
表面来看,上述想法近乎不可思议:一项单一的技术在应用初期就能治病、延缓衰老、清理有毒的废物、扩大世界的食物供应、筑路、造汽车和造楼房?这并非天方夜谭,也许在21世纪中叶前就可以实现。
现在,全世界的研究机构都在想方设法将这些设想变成现实。今年1月,美国总统克林顿甚至宣布成立美国国家纳米研究机构,承诺提供50亿美元进行这方面的尝试。
其实,纳米技术一词由来已久。理查德·费恩曼是继爱因斯坦之后最有争议和最伟大的理论物理学家,1959年他在一次题目为《在物质底层有大量的空间》的演讲中提出:将来人类有可能建造一种分子大小的微型机器,可以把分子甚至单个的原子作为建筑构件在非常细小的空间构建物质,这意味着人类可以在最底层空间制造任何东西。从分子和原子着手改变和组织分子是化学家和生物学家意欲到达的目标。这将使生产程序变得非常简单,你只需将获取到的大量的分子进行重新组合就可形成有用的物体。
事实上,每一个细胞都是一个活生生的纳米技术应用的实例:细胞不仅将燃料转化为能量,而且按照储存在DNA中的信息来建造和激活蛋白质和酶,通过对不同物种的DNA进行重组,基因工程家已经学会建造新的这类纳米工具,例如用细菌细胞来生产医用激素。
[编辑本段]纳米技术的其他大胆应用
纳米技术的大胆应用设想还包括:利用纳米机器将获取的碳原子逐个组织起来,变成精美的金刚石;将二氧化物分子重新分解为原来的组成部分;在人血中放入纳米巡航工具,它能自动寻找沉积于静脉血管壁上的胆固醇,然后将它们一一分解;将来纳米机器能够把草地上剪下来的草变成面包……在完全意义上讲,世上每一个现实存在的物体无论是电脑还是奶酪都是由分子组成的;
在理论上,纳米机器可以构建所有的物体。
当然从理论到真正实现应用是不能等同的,但纳米机械专家已经表明,实现纳米技术的应用是可行的。在扫描隧道电子显微镜帮助下,纳米机械专家已经能将独立的原子安排成自然界从未有的结构。此外,纳米机械专家还设计出了只由几个分子组成的微小齿轮和马达。(切勿将这些齿轮和马达与那些由数以百万计分子组成的用传统技术构建的微小齿轮和马达相混淆,这些机器同未来制造的机器相比较实在是太巨大了)。
25年内,纳米技术学家期望实现这些存在于科学陈列室中的想法,创造出真实的、可以工作的纳米机器。这些纳米机器有微小的“手指”可以精巧地处理各种分子;有微小的“电脑”来指挥“手指”如何操作。“手指”可能由碳纳米管制造,它的强度是钢的100倍,细度是头发丝的五万分之一。“电脑”可能由碳纳米管制造,这些碳纳米管既能做晶体管又能做连接它们的导线。“电脑”也可能由DNA制造,用适当的软件和足够的灵巧性进行武装的纳米机器人可以构建任何物质。
纳米机器人执行任何任务包括自身复制都必须动用大量的纳米机器。血液里可能存在数以百万计的纳米机器人;在每一个有毒废物地点可能需要数以万亿计的纳米机器人,要制造一辆汽车可能要调动数以一百亿亿计的纳米机器人同时工作。然而没有一个生产线可以生产如此巨大数量的纳米机器人。
但是纳米科学家眼中的纳米机器可以做到这点。他们设计的纳米机器人可以完成两件事情:执行它们的主要任务和制造出它们自身完美的复制体。如果第一个纳米机器人能够制造出两个复制体,这两个复制体每个又可制造出两个自己的复制体,很快就可以获得万亿个纳米机器人。
但是,假如纳米机器人忘记停止复制会发生什么?如果没有一些内建的停止信号,纳米机器人忘记停止复制这种灾难的可能后果将会是无法计算的。纳米机器人在人体内快速复制能够比癌症扩散还要快地布满正常组织;一个发疯的制造食物机器人能够把地球的整个生物圈变成一块巨大的奶酪。
纳米技术学家没有回避危险,但是他们相信他们能控制灾难的发生。其中一个办法是设计出一种软件程序使纳米机器人在复制数代后自我摧毁。另一种办法是设计出一种只在特定条件下复制的机器人,例如只有在有毒化学物质以较高浓度出现时机器人才能复制,或者在一个很窄的温度和湿度范围内机器人才能复制。
就像电脑病毒的传播一样,所有以上这些努力都无法阻止那些不怀好意的人有意释放某种纳米机器人作为害人武器。事实上,一些批评家指出纳米技术可能的危险要大于它的益处。然而,仅仅这些利益就已经太具诱惑力了,纳米技术必将超过电子计算机和基因制药而成为新世纪的技术发展方向。世界可能会需要一个纳米技术免疫系统,这个系统中纳米机器人警察不断地在微观世界中同那些不怀好意的机器人进行战斗。
[编辑本段]中国纳米机器人显奇功
中国人也可以像摆棋子一样摆弄原子了。记者从中科院获悉,一台能够在纳米尺度上操作的机器人系统样机近日由中国科学院沈阳自动化所研制成功,并通过了国家“863”自动化领域智能机器人专家组的验收。 在一个演示中,沈阳自动化所的研究人员操纵“纳米微操作机器人”,在一块硅基片上1×2μm的区域上清晰刻出“SIA”三个英文字母(沈阳自动化所的缩写);另一个演示显示,在一个5×5μm的硅基片上,操作者将一个4μm长、100nm(纳米)粗细的碳纳米管准确移动到一个刻好的沟槽里。
纳米微操作机器人在10×10微米的基片上刻出的字样
测试显示,在刻画操作中,这台纳米微操作机器人在512个像素宽度的显示区域里,重复定位误差小于5个像素,精度达1%以上;在移动纳米碳管的操作中,重复定位精度达到30nm;而在基于路标的定位测试中,其定位误差小于4nm。 专家解释,一纳米(1nm)是10-9米,大约等于十个氩原子并列成一条直线的长度。在纳米尺度上的操作,被称为“纳米微操作”,是纳米技术的重要内容,其目的是在纳米尺度上按人的意愿对纳米材料实现移动、整形、刻画以及装配等工作。纳米微操作始于上世纪80年代,IBM的科学家1989年利用扫描式隧道显微镜(STM)操作35个氙原子在镍金属表面拼出I-B-M三个字母,成为轰动世界的新闻,开了纳米微操作先河。从此,纳米操作技术作为一个重要的战略发展方向吸引各国竞相展开研究。 该项目研究人员介绍,这台机器人系统在纳米尺度下的系统建模方法、三维纳观力获取与感知及误差分析与补偿方面有很多突破与创新,都达到世界先进水平。 据介绍,这种纳米微操作机器人可广泛应用于纳米科学实验研究、生物工程与医学实验研究、微纳米科研教学等领域。如生物学研究领域中,使用纳米微操作机器人可完成对细胞染色体的切割操作;也可在DNA或分子水平上进行生化检测及病理、生理测试实验研究。此外这种机器人在IC工业中纳米器件的装配与加工方面也有良好的应用前景,如可以利用它操作纳米微粒,装配微/纳米电子器件,甚至复杂的纳米电路。这意味着,未来利用纳米电路制成的电脑和家用电器,可以“想要它有多小,就能做多小”,甚至可以“塞进牙缝”;而未来利用纳米操作技术制作的微型机器人,也可以钻入人体替病人疏通血管,或在肉眼看不见的微观世界里,完成人们自己不可能完成的任务。
[编辑本段]一款下载/上传软件
专用于纳米盘(网络硬盘)的下载/上传软件。批量上传下载; 单次不限文件数及总大小; 支持4G的超大文件上传;(公开测试期间暂不支持) 支持断点续传; 支持http下载并贮存于纳米盘; 下载/上传速度更快;节约时间; 支持拖放式上传,操作更方便; 支持历史任务管理;