作者:广东在线游戏网日期:
返回目录:游戏解答
1/一次方程组问题;
2/采用分离系数的方法表示百线性方程组,相当于现在的矩阵;
3/解线性方程组时使用的直度除法,与矩阵的初等变换一致。
(这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出问完整的线性方程的解法法则。)答
4/这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现专今代数中法则完全相同;
5/解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第属一次突破了正数的范围,扩展了数系。
第一章“方田”,列题38个。主要讲平面几何图形面积(土地面积)的计算方法。包括长方形(直田)、等腰三角形(圭田)、直角梯形(邪田)、等腰梯形(箕田)、圆(圆田)及圆环(环田)等的面积公式。方田章从第五题开始就系统讲述分数的运算。其中包括约分、通分、分数的四则运算,比较分数的大小,以及求几个分数的算术平均数等。
第二章“粟米”,列题46个。主要讲各种粮食折算的比例问题,在成比例的四个数中,根据三个已知数求第四个数,所用方法称为“今有术”。
第三章“衰分”,列题20个。衰分是按比例递减分配的意思。这一章主要讲按比例分配物资或按一定比例摊派税收的比例分配问题。其中含有用比例方法解决的等差数列、等比数列问题。
第四章“少广”,列题24个。主要讲已知正方形面积或长方体体积反求边长,即开平方或开立方的方法 ,还给出了由圆面积求周长,由球体积求直径的近似公式。由于取圆周率为3,所以精确度较差。
第五章“商功”,列题28个。主要讲各种形体的体积计算公式。涉及的几何体有长方体、棱柱、棱锥、棱台、圆柱、圆锥、圆台、楔形体等。问题的大都来源于营造城垣、开凿沟渠,修造仓窖等实际工程。
第六章“均输”,列题28个,均输意为按人口多少、路途远近和谷物贵贱合理摊派税收和劳役等。这一章主要讲以赋税计算和其它应用问题为中心的较为复杂的比例问题的计算方法。
第七章“盈不足”,列题20个。主要讲以盈亏问题为中心的计算方法。
第八章“方程”,列题18个。主要讲一次方程组问题的解法,并提出了关于正、负数加减运算的“正负术”。
第九e79fa5e98193e4b893e5b19e330章“勾股”,列题24个。主要讲勾股定理的应用和测量问题,以及勾股容方和容圆问题的解法。
《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。
《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是:
第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;
第三章“衰分”:比例分配问题。
第四章“少广”:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。
第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;
第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。
第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、e799bee5baa6e997aee7ad94e58685e5aeb9337弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。