返回目录:游戏解答
《九章算术》是《算经十书》中内容最丰富和最重要的一部。几乎集中了过去和当时的全部数学知识,是中国最早的一部数学专著。《九章算术》经过了历代各家的修订和增补,逐渐成为定本。
《九章算术》是用问题集的形式编写的。全书共收集了246个问题,分为九章,所以叫做《九章算术》。这九章分别是:
第一复章“方田”,主要讲述田亩面积的计算。
第二章“粟米”,讲述各种比例问题,特别是各种粮谷之间的比例交换。
第三章“衰分”,“衰”是按比例,制“分”是分配,讲述按照比例分配的问题。
第四章“少广”,“少”是多少,“广”是宽广。“少广”就是已知面积和体积,反过来求某一边的问题,其中讲解了开平方、开立方的问题。
第五章“商功”,“商”是商量,“功”是工程。这是有关各种工程计算,主要是各种体积计算的问题。
第六章“均输”,是zd计算如何按照人口多少、路程远近等条件,合理安排各地区运输赋粟和分派徭役等问题。
第七章“盈不足”,是用假设的方法来解决某些难以解决的问题。
第八章“方程”,讲述关于一次方程组的解法。其中还有正负数的概念以及正负数加减法的法则。
第九章“勾股”,讲述了勾股定理,以及相似直角三角形的解法。还提出了一般二次方程的解法。
第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形636f70797a64333、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。
第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;
第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础。
第四章“少广”:已知面积、体积,反求其一边长和径长等;
第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。
第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。
第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组, 勾股定理求解相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。
第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。
《九章算术》全书收有246个数学问题,分为九大zhidao类,就是“九章”。第一章“方田”,主要讲各种田亩面积的算法;第二章“粟米”,主要讲各种谷物按比例交换的算法;第三章“衰分”,主要讲按等级或比例进行分配的算法;第四章“少广”,主要讲已知面积和体积反求它一边的算法;第五章“商功”,主要讲有关土石方和用工量的各种工程的算法:第六章“均输”,主要讲按人口多少和路途远近等条件回来摊派税收和分派劳力(徭役)的算法;第七章“盈不足”,主要讲两次假设来解决某些难解问题的算法;第八章“方程”,主要讲联立一次方程组的解答法和正负数的加减法法则;第九章“勾股”,主要讲勾股定理的应用、直角相似三角形和一元二次方程的解法。