返回目录:游戏解答
接近光速旅行所需要的能量能用反物质和正物质的湮灭来提供,虫洞还处于假设之中,无法回答哦。
虫洞理论是阿尔伯特·爱因斯坦提出的。
60多年前,爱因斯坦提出了“虫洞”理论。那么,“虫洞”是什么呢?简单地说,“虫洞”是宇宙中的隧道,它能扭曲空间,可以让原本相隔亿万公里的地方近在咫尺。
“虫洞”其实是个比喻,最初是把宇宙比作苹果,就如苹果里有虫子,那么从苹果表面的一面走到另一面就是距离最长的,而如果e69da5e887aae79fa5e98193335把苹果蛀了洞,比如从一侧蛀到另一侧,那小虫子爬起来就近了。宇宙也是一样,从一个时空到另一个时空是要许多光年的,但如果时空弯曲,形成苹果里的虫子洞,那么就可以很容易做到时空穿梭。
随着科学技术的发展,新的研究发现,“虫洞”的超强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。据美国华盛顿大学物理系研究人员的计算,“负质量”可以用来控制“虫洞”。他们指出,“负质量”能扩大原本细小的“虫洞”,使它们足以让太空飞船穿过。
2000年3月29日,人类在寻找太阳系外行星方面取得重大进展。美国加利福尼亚大学的科学家宣布,他们发现了两颗迄今为止围绕着其他恒星运行的最小行星。这两颗太阳系外的行星质量与土星相近。这标志着科学家在寻找地球大小的太阳系外的行星的过程中迈出了重要的一步,因为迄今为止观测行星的技术只能发现比木星大的太阳系外行星,e799bee5baa6e997aee7ad94e4b893e5b19e365而要寻找外星生命,只能到地球大小的行星上去找。想要飞向太阳系外的恒星,解决动力问题则是关键。
恒星周围存在行星是一个普遍现象。在太阳系附近的恒星周围肯定存在着行星系统,了解那里的行星无疑是一件激动人心的事。可现有的天文手段在这方面显得过于苍白无力。它既不能告诉我们这些行星的大气组成,也无法揭示其地质构造,甚至天文学家连它们的几何尺寸也无从知晓。
这一切都是地球与目标行星之间的距离所致————动辄几十万天文单位的旅程会令最狂热的宇航迷变得垂头丧气,用化学火箭推进的探测器要用成千上万年才能飞到那里。
如何在一个科学家的有生之年完成太阳系外的探险呢?这时飞船应该达到每秒几百公里的速度,而目前最快的飞船只能达到这速度的十分之一。现行的飞船之所以行动迟缓,根本原因在于它们仅靠化学火箭在其飞行的头几分钟里加速,冲出大气层后的航程完全倚赖惯性滑行,充其量在路过大行星时靠其引力加速。因此要想飞向太阳系外的恒星,解决动力问题是关键。
目前“旅行者”号和“先驱者”号探测器已经飞越了冥王星轨道,成为离地球最远的探测器。为了达到这一目标,科学家花费了十几年的时间,其间还不断利用大行星的引力加速(称为“引力跳板”技术)。而且从一开始,它们就是用最强大的化学火箭(“土星”号)发射的。
下面的方法是科学家想到的飞越太阳系到达其他恒星的方法。其中有一些现在就可以实现,而另一些也许永远只能停留在设想阶段。
核动力火箭
20世纪50年代,随着和平利用原子能的呼声日益高涨,原子火箭发动机应运而生。法国人设计了以水为工作物质的原子能火箭,它靠核反应堆产生的热量将水汽化,高速喷射出的水蒸汽能使星际飞船逐渐加速。火箭要喷出5000吨的水才能在50年内把飞船送往最近的恒星———比邻星(距地球4·22光年)。
一般化学火箭的结构质量占总质量的6%—10%,有效载荷仅占1%;而原子能火箭的结构质量占总质量的12%—15%,但有效载荷可占总质量的5%—8%。以氘为燃料的核聚变火箭,排气速度可达15000公里/秒,足以在几十年内把宇宙飞船送到别的恒星。
聚变比裂变放出更大的能量。在一个核聚变推进系统中理论上每千克燃料能够产生100万亿焦耳能量———比普通化学火箭的能量密度高一千万倍。核聚变反应将产生大量高能粒子。用电磁场约束这些粒子,使之向指定方向喷射,飞船就可以高速前进了。为安全起见,核飞船至少应在近地轨道组装。为利用月球上丰富的氦资源,月球也是理想的组装发射地。此外也可以在拉格朗日点(此点处的物体在绕地球运转的同时保持与月球相对距离不变)处完成组装,原材料从月球上用电磁推进系统发送。
光帆
中国古代的纸鸢无法和现在的超音速飞机同日而语,今人设想的喷射式推进系统也不能和未来实际的星际飞船相提并论。相对于核动力火箭来说,以下几种进入太空的方法更有可能在未来的星际飞行中使用。
15世纪地理大发现时期,西欧的水手们扬帆远航,驶向传说中的大陆。未来的星际航行恐怕还要借助“帆”这种古老的工具,只不过驱动“太空帆”的不是气流而是光。早在20世纪20年代,物理学家就已证明电磁波对实物具有压力效应。1984年,科学家提出,实现长期太空飞行的最佳方法是向一个大型薄帆发射大功率激光。这种帆被称为“光帆”。它采用圆盘状布局,直径达3· 6千米,帆面材料为纯铝,无任何支撑结构,其最大飞行速度可达到光速的十分之一。在搭载1吨的有效载荷时,飞抵半人马座的α星仅需40年或更少的时间。以这个速度,太空船可以在两天内从太阳飞到冥王星,但要是飞越另一个太阳系并对其进行考察,这速度显然太低了。
为了进行详细的考察,可以采用“加速———减速”的飞行方案。这时光帆直径取100千米,使用功率为7·2×1012瓦的激光器向它发射激光。在减速阶段,将有一个类似减速伞的小型光帆被释放出来。它把大部分激光向飞船的前进方向反射,以达到制动的目的。
虽然要求较高,但较其他形式的星际飞船而言,光帆是在技术上和经济上最容易实现的方案。根据估算,在使用金属铍作为帆面材料时,飞到半人马座α星的总费用为66·3亿美元。这只相当于阿波罗计划投资的1/4。
人工时空隧道
不少科幻影片(如《星球大战》)中都有这样的镜头:随着船长一声令下,结构复杂的引擎开始工作,接着宇宙飞船便消失于群星中,几乎就在同时,它完好地出现在遥远的目的地……现代物理学证明,这看似荒诞的场景是可以发生的。
现代物理学(时空场共振理论)认为,时间是能量在时空中高频振荡的结果,宇宙间各时空点的性质取决于该点电磁场的结构特性。
该理论认为宇宙中各时空点有其确定的能量流动特性,它可以用一组谐波来描述。若用人工方法产生一定的谐波结构,使它与远距离某时空点的谐波结构特性相同,则二者就会产生共振,形成一个时空隧道,飞行器可以循着这个时空隧道在瞬间到达宇宙的另一位置。
实施这一方案的关键是飞船必须能产生适当的能量形态,以满足选定时空点的谐波结构特性。
通过“虫洞”的星际航行
还有一种名为“虫洞”的奇异天体,它是连接空间两点的时空短程线。科学家认为,通过虫洞可以实现物质的瞬间转移。用这种方法进行的星际航行可以完全不考虑相对论效应。遗憾的是这种理论上应该存在的“空间桥梁”至今还没有发现。
无疑,无论哪种方法离现实都有一定的距离,但它们在技术上并不是不可行的。无论困难多大,人类探索未知领域的天性不会改变。可以设想,人类最终迈出太阳系摇篮,飞向星际的日子不会太远了 .
探索星空是人类一个恒久的梦想。 在晴朗的夜晚,每当我们仰起头来, 就会看到满天的繁星。自古以来 星空以它无与伦比的浩瀚、深邃、 美丽及神秘激起着人类无数的遐想。著名的美国科幻电视连续剧《星际旅行》(Star Trek) 中有这样一句简短却意味无穷的题记:星空, 最后的前沿(Space, the final frontier)当我第一次观看这个电视连续剧的时候, 这句用一种带有磁性的话外音念出的题记给我留下了令人神往的印象。
在远古的时候, 人类探索星空的方式是肉眼,后来开始用望远镜, 但人类迈向星空的第一步则是在一九五七年那一年, 人类发射的第一个航天器终于飞出了我们这个蓝色星球的大气层。十二年后, 人类把足迹留在了月球上三年之后, 人类向外太阳系发射了先驱者十号深空探测器。一九八三年, 先驱者十号飞离了海王星轨道,成为人类发射的第一个飞离太阳系的航天器,
从人类发射第一个航天器以来,短短二十几年的时间里,齐奥尔科夫斯基所预言的“人类首先将小心翼翼地穿过大气层, 然后再去征服太阳周围的整个空间”就成为了现实, 人类探索星空的步履不可谓不迅速。但是, 相对于无尽的星空而言,这种步履依然太过缓慢。 率先飞出太阳系的先驱者十号如今正在一片冷寂的空间中滑行着,在满天的繁星之中, 要经过多少年它才能飞临下一颗恒星呢?答案是两百万年! 那时它将飞临距离我们六十八光年的金牛座(Taurus)[注三]。六十八光年的距离相对于地球上的任何尺度来说都是极其巨大的, 但是相对于远在三万光年之外的银河系中心,远在两百二十万光年之外的仙女座大星云远在六千万光年之外的室女座星系团,以及更为遥远的其它天体来说无疑是微不足道的。人类的好奇心是没有边界的, 可是即便人类航天器的速度再快上许多倍,甚至e68a84e8a2ade799bee5baa6e79fa5e98193361接近物理速度的上限 - 光速,用星际空间的距离来衡量依然是极其缓慢的,
那么,有没有什么办法可以让航天器以某种方式变相地突破速度上限, 从而能够在很短的时间内跨越那些近乎无限的遥远距离呢?科幻小说家们率先展开了想象的翅膀, 一九八五年,美国康乃尔大学(Cornell University) 的著名行星天文学家卡尔·萨根(Carl Sagan) 写了一部科幻小说叫做《接触》(Contact)。萨根对探索地球以外的智慧生物有着浓厚的兴趣,他客串科幻小说家的目的之一是要为寻找外星智慧生物的 SETI 计划筹集资金他的这部小说后来被拍成了电影, 为他赢得了广泛的知名度,
萨根在他的小说中叙述了一个动人的故事: 一位名叫艾丽(Ellie) 的女科学家收到了一串来自外星球智慧生物的电波信号。经过研究, 她发现这串信号包含了建造一台特殊设备的方法,那台设备可以让人类与信号的发送者会面经过努力,艾丽与同事成功地建造起了这台设备, 并通过这台设备跨越了遥远的星际空间与外星球智慧生物实现了第一次接触。
但是, 艾丽与同事按照外星球智慧生物提供的方法建造出的设备究竟利用了什么方式让旅行者跨越遥远的星际空间的呢?这是萨根需要大胆 “幻想”的地方。 他最初的设想是利用黑洞。但是萨根毕竟不是普通的科幻小说家, 他的科学背景使他希望自己的科幻小说尽可能地不与已知的物理学定律相矛盾。于是他给自己的老朋友加州理工大学(California Institute of Technology) 的索恩(Kip S. Thorne) 教授打了一个电话。索恩是研究引力理论的专家,萨根请他为自己的设想做一下技术评估。索恩经过思考及粗略的计算, 很快告诉萨根黑洞是无法作为星际旅行的工具的,他建议萨根使用虫洞 (wormhole) 这个概念。据我所知, 这是虫洞这一名词第一次进入科幻小说中在那之后, 各种科幻小说、电影、 及电视连续剧相继采用了这一名词,虫洞逐渐成为了科幻故事中的标准术语 这是科幻小说家与物理学家的一次小小交流结出的果实。
萨根与索恩的交流不仅为科幻小说带来了一个全新的术语, 也为物理学开创了一个新的研究领域。在物理学中,虫洞这一概念最早是由米斯纳(C. W. Misner) 与惠勒(J. A. Wheeler) 于一九五七年提出的,与人类发射第一个航天器恰好是同一年。 那么究竟什么是虫洞?它又为什么会被科幻小说家视为星际旅行的工具呢? 让我们用一个简单的例子来说明:大家知道, 在一个苹果的表面上从一个点到另一个点需要走一条弧线,但如果有一条蛀虫在这两个点之间蛀出了一个虫洞, 通过虫洞就可以在这两个点之间走直线,这显然要比原先的弧线来得近。 把这个类比从二维的苹果表面推广到三维的物理空间,就是物理学家们所说的虫洞, 而虫洞可以在两点之间形成快捷路径的特点正是科幻小说家们喜爱虫洞的原因[注五]。只要存在合适的虫洞, 无论多么遥远的地方都有可能变得近在咫尺,星际旅行家们将不再受制于空间距离的遥远。在一些科幻故事中, 技术水平高度发达的文明世界利用虫洞进行星际旅行就像今天的我们利用高速公路在城镇间旅行一样。在著名的美国科幻电影及电视连续剧《星际之门》(Stargate,港台译星际奇兵) 中人类利用外星文明留在地球上的一台被称为“星际之门” 的设备可以与其它许多遥远星球上的“星际之门” 建立虫洞连接,从而能够几乎瞬时地把人和设备送到那些遥远的星球上。 虫洞成为了科幻故事中星际旅行家的天堂。
不过米斯纳与惠勒所提出的虫洞是极其微小的, 并且在极短的时间内就会消失,无法成为星际旅行的通道。 萨根的小说发表之后,索恩对虫洞产生了浓厚的兴趣, 并和他的学生莫里斯(Mike Morris) 开始对虫洞作深入的研究。与米斯纳和惠勒不同的是, 索恩感兴趣的是可以作为星际旅行通道的虫洞,这种虫洞被称为可穿越虫洞 (traversable wormhole)。 那么什么样的虫洞能成为可穿越虫洞呢?一个首要的条件就是它必须存在足够长的时间, 不能够没等星际旅行家穿越就先消失。因此可穿越虫洞首先必须是足够稳定的。 一个虫洞怎样才可以稳定存在呢?索恩和莫里斯经过研究发现了一个不太妙的结果, 那就是在虫洞中必须存在某种能量为负的奇特物质!为什么会有这样的结论呢? 那是因为物质进入虫洞时是向内汇聚的,而离开虫洞时则是向外飞散的, 这种由汇聚变成飞散的过程意味着在虫洞的深处存在着某种排斥作用。由于普通物质的引力只能产生汇聚作用, 只有负能量物质才能够产生这种排斥作用。因此, 要想让虫洞成为星际旅行的通道,必须要有负能量的物质。 索恩和莫里斯的这一结果是人们对可穿越虫洞进行研究的起点。
索恩和莫里斯的结果为什么不太妙呢? 因为人们在宏观世界里从未观测到任何负能量的物质。事实上, 在物理学中人们通常把真空的能量定为零。所谓真空就是一无所有, 而负能量意味着比一无所有的真空具有“更少” 的物质,这在经典物理学中是近乎于自相矛盾的说法。
但是许多经典物理学做不到的事情在二十世纪初随着量子理论的发展却变成了可能。负能量的存在很幸运地正是其中一个例子。 在量子理论中,真空不再是一无所有, 它具有极为复杂的结构,每时每刻都有大量的虚粒子对产生和湮灭。一九四八年,荷兰物理学家卡西米尔(Hendrik Casimir) 研究了真空中两个平行导体板之间的这种虚粒子态,结果发现它们比普通的真空具有更少的能量, 这表明在这两个平行导体板之间出现了负的能量密度!在此基础上他发现在这样的一对平行导体板之间存在一种微弱的相互作用。 他的这一发现被称为卡什米尔效应。将近半个世纪后的一九九七年, 物理学家们在实验上证实了这种微弱的相互作用,从而间接地为负能量的存在提供了证据。除了卡什米尔效应外, 二十世纪七八十年代以来,物理学家在其它一些研究领域也先后发现了负能量的存在。
因此,种种令人兴奋的研究都表明, 宇宙中看来的确是存在负能量物质的。但不幸的是, 迄今所知的所有这些负能量物质都是由量子效应产生的,因而数量极其微小。 以卡西米尔效应(Casimireffect)为例,倘若平行板的间距为一米, 它所产生的负能量的密度相当于在每十亿亿立方米的体积内才有一个(负质量的) 基本粒子!而且间距越大负能量的密度就越小。 其它量子效应所产生的负能量密度也大致相仿。因此在任何宏观尺度上由量子效应产生的负能量都是微乎其微的。
另一方面,物理学家们对维持一个可穿越虫洞所需要的负能量物质的数量也做了估算, 结果发现虫洞的半径越大,所需要的负能量物质就越多。 具体地说,为了维持一个半径为一公里的虫洞所需要的负能量物质的数量相当于整个太阳系的质量。
如果说负能量物质的存在给利用虫洞进行星际旅行带来了一丝希望,那么这些更具体的研究结果则给这种希望泼上了一盆无情的冷水。 因为一方面迄今所知的所有产生负能量物质的效应都是量子效应,所产生的负能量物质即使用微观尺度来衡量也是极其微小的。 另一方面维持任何宏观意义上的虫洞所需的负能量物质却是一个天文数字!这两者之间的巨大鸿沟无疑给建造虫洞的前景蒙上了浓重的阴影。 虽然数字看起来令人沮丧, 但是别忘了当我们讨论虫洞的时候,我们是在讨论一个科幻的话题。 既然是讨论科幻的话题,我们姑且把眼光放得乐观些。 即使我们自己没有能力建造虫洞,或许宇宙间还存在其它文明生物有能力建造虫洞, 就像《星际之门》的故事那样。甚至, 即使谁也没有能力建造虫洞,或许在浩瀚宇宙的某个角落里存在着天然的虫洞。因此让我们姑且假设在未来的某一天人类真的建造或者发现了一个半径为一公里的虫洞。
我们是否就可以利用它来进行星际旅行了呢?
初看起来半径一公里的虫洞似乎足以满足星际旅行的要求了, 因为这样的半径在几何尺度上已经足以让相当规模的星际飞船通过了。看过科幻电影的人可能对星际飞船穿越虫洞的特技处理留有深刻的印象。 从屏幕上看,飞船周围充斥着由来自遥远天际的星光和辐射组成的无限绚丽的视觉幻象, 看上去飞船穿越的似乎是时空中的一条狭小的通道。
但实际情况远比这种幻想来得复杂。 事实上为了能让飞船及乘员安全地穿越虫洞,几何半径的大小并不是星际旅行家所面临的主要问题。 按照广义相对论,物质在通过象虫洞这样空间结构高度弯曲的区域, 会遇到一个十分棘手的问题,那就是张力。这为由于引力场在空间各处的分布不均匀所造成的,它的一种大家熟悉的表现形式就是海洋中的潮汐。由于这种张力的作用, 当星际飞船接近虫洞的时候,飞船上的乘员会渐渐感觉到自己的身体在沿虫洞的方向上有被拉伸的感觉, 而在与之垂直的方向上则有被挤压的感觉。这种感觉便是由虫洞引力场的不均匀造成的。 一开始,这种张力只是使人稍有不适而已, 但随着飞船与虫洞的接近,这种张力会迅速增加, 距离每缩小十分之一,这种张力就会增加约一千倍。 当飞船距离虫洞还有一千公里的时候,这种张力已经超出了人体所能承受的极限, 如果飞船到这时还不赶紧折回的话,所有的乘员都将在致命的张力作用下丧命。 再往前飞一段距离,飞船本身将在可怕的张力作用下解体, 而最终,疯狂增加的张力将把已经成为碎片的飞船及乘员撕成一长串亚原子粒子。从虫洞另一端飞出的就是这一长串早已无法分辨来源的亚原子粒子!
这就是星际探险者试图穿越半径为一公里的虫洞将会遭遇的结局。半径一公里的虫洞不是旅行家的天堂, 而是探险者的地狱。
因此一个虫洞要成为可穿越虫洞, 一个很明显的进一步要求就是:飞船及乘员在通过虫洞时所受到的张力必须很小 计算表明,这个要求只有在虫洞的半径极其巨大的情况下才能得到满足[注六]。 那么究竟要多大的虫洞才可以作为星际旅行的通道呢?计算表明, 半径小于一光年的虫洞对飞船及乘员产生的张力足以破坏物质的原子结构,这是任何坚固的飞船都无法经受的, 更遑论脆弱的飞船乘员了。因此, 一个虫洞要成为可穿越虫洞,其半径必须远远大于一光年。 但另一方面, 一光年用日常的距离来衡量虽然是一个巨大的线度,用星际的距离来衡量, 却也不算惊人。我们所在的银河系的线度大约是它的十万倍, 假如在银河系与两百二十万光年外的仙女座大星云之间存在一个虫洞的话从线度上讲它只不过是一个非常细小的通道。 那么会不会在我们周围的星际空间中真的存在这样的通道,只不过还未被我们发现呢? 答案是否定的。因为半径为一光年的虫洞真正惊人的地方不在于它的线度, 而在于维持它所需的负能量物质的数量。计算表明, 维持这样一个虫洞所需的负能量物质的数量相当于整个银河系中所有发光星体质量总和的一百倍!这样的虫洞产生的引力效应将远比整个银河系的引力效应更为显著, 如果在我们附近的星际空间中存在这种虫洞的话,周围几百万光年内的物质运动都将受到显著的影响,我们早就从它的引力场中发现其踪迹了。
因此不仅在地球上不可能建造可穿越虫洞,在我们附近的整个星际空间中都几乎不可能存在可穿越虫洞而未被发现。
这样看来,我们只剩下一种可能性需要讨论了, 那就是在宇宙的其它遥远角落里是否有可能存在可穿越虫洞?对于这个问题, 我们也许永远都无法确切地知道结果,因为宇宙实在太大了。 但是维持可观测虫洞所需的数量近乎于天方夜谭的负能量物质几乎为我们提供了答案。迄今为止, 人类从未在任何宏观尺度上发现过负能量物质所有产生负能量物质的实验方法利用的都是微弱的量子效应。为了能够维持一个可穿越虫洞, 必须存在某种机制把量子效应所产生的微弱的负能量物质汇集起来,达到足够的数量。 但是负能量物质可以被汇聚起来吗?物理学家们在这方面做了一些理论研究, 结果表明由量子效应产生的负能量物质是不可能无限制地加以汇聚的。负能量物质汇聚得越多, 它所能够存在的时间就会越短。因此一个虫洞没有负能量物质是不稳定的, 负能量物质太多了也会不稳定!那么到底什么样的虫洞才能够稳定的呢? 初步的计算表明,只有线度比原子的线度还要小二十几个数量级的虫洞才是稳定的!
这一系列结果无疑是非常冷酷的, 如果这些结果成立的话,存在可穿越虫洞的可能性就基本上被排除了, 所有那些美丽的科幻故事也就都成了镜花水月。不过幸运 (或不幸) 的是,上面所叙述的许多结果依据的是还比较前沿 - 因而相对来说也还比较不成熟- 的物理理论。未来的研究是否会从根本上动摇这些理论, 从而完全推翻我们上面介绍的许多结果,还是一个未知数。 退一步讲,即使那些物理理论基本成立, 上面所叙述的许多结果也只是从那些理论推出的近似结果或特例。比方说, 许多结果假定了虫洞是球对称的,而实际上虫洞完全可以是其它形状的, 不同形状的虫洞所要求的负能量物质的数量,所产生张力的大小都是不同的。 所有这些都表明即使那些物理理论真的成立,我们上面提到的结论也不见得是完全
打开它的方法就是共鸣利用物质间相互吸引原理使两时空虫洞正反两种物质能量互相吸引从而打开它,但这两种能量是光能量与暗能量
英国著名物理学家史蒂芬霍金承认外星人的存在后,又再语出惊人。他在一部纪录片内讨论时间旅行,说明“时光机器”在科学上并非无可能。例如,如果一艘太空船能以接近光速的速度在宇宙飞行,就可让船上乘客进入未来。他指出,在瑞士地下的大型强子对撞机内,人类已把粒子加速至接近光速运行。 物理学家霍金拍摄一部有关宇宙的纪录片时指出,要进入未来大概有两种方法,第一就是通过所谓的“虫洞”。霍金强调,虫洞就在四周,只是小到肉眼很难看见,它们存在于空间与时间的裂缝中。如同在3度空间中,时间也有细微的裂缝,而比分子、原子还细小的空间则被命名为“量子泡沫”,虫洞就存在于其中。不过,霍金表示,这些隧道小到人类无法穿越,但有朝一日也许能够抓住一个虫洞,再将它无限放大,或许将来也可以建造一个巨大的虫洞。
霍金指出,理论上时光隧道或虫洞不但能带着人类前往其他行星,如果虫洞两端位于同一位置,且以时间而非距离间隔,那么太空船即可飞入,飞出后仍然接近地球,只是进入所谓“遥远的过去”。不过霍金也指出,时光机不能回到过去,因为回到过去违反了基本的因果论。
另外,霍金还说,如果科学家能够建造速度接近光速的太空船,那么太空船必然会因为不能违反光速是最大速限的法则,而导致舱内的时间变慢,那么飞行一个星期就等于是地面上的100年,也就相当于飞进未来。 历史上最快的有人驾驶飞行器,是“阿波罗十号”。它达到每小时25000英里。但若想在时间中旅行,必须再快2000多倍。需要一部足以携带大量燃料的庞大机器。飞船会不断加速,在一周内,它就可以到达外行星。两年后,它可以达到半光速,飞出太阳系。再两年后它将达到光速的90%,远离地球约三十万亿英里。发射四年后,飞船就会开始穿越未来。飞船上每度过一小时,地球上将度过两小时。
再经过两年开足马力的旅行,飞船将达到其最高速,也即光速的99%。在这种速度中,飞船上的一天,等于地球上的一年。这时的飞船就真正飞入未来了。
其他物理学家支持霍金的理论,包括曼彻斯特大学粒子物理学教授布赖恩科克斯。科克斯说:“当用大型强子对撞机把粒子加速,达到光速的99%,粒子经历的时间,以其时间的七千分之一速率消逝。太空中的数十年,在地球上可能已过去了250万年”。
但遗憾的是,有关虫洞的论述还未被实验证实。 在银河系中央存在恐怖的超大质量黑洞,这是一种质量庞大的天体,至少可达到数百万倍太阳质量,但科学家提出了一个设想,认为银河系中央的超大质量黑洞可能是一个虫洞,如果有更高级的文明存在,那么它们就会利用这个虫洞进行星际旅行,甚至是回到过去。银河系中央的黑洞被命名为人马座A*,其在吞噬物质的过程中释放出强大的射电波,质量接近太阳质量的4百万倍左右,我们对这个黑洞的了解并不多,但它确实是存在的。
作者:NASABBCA NASA最新一项科学研究数据显示,黑洞天体很可能是产生其他宇宙的虫洞。如果事实的确如此,那么它将帮助揭开一个名为黑洞信息悖论的量子谜题,但批评家认为它也可能引发新的问题,例如虫洞最初是如何形成的。
黑洞是内部具有强大引力场的天体,这样强大的引力使得即使是光也无法逃逸。爱因斯坦的广义相对论认为当物质被挤压成非常小的空间时就会形成黑洞。尽管黑洞无法被直接观测到,但天文学家已经鉴别了很多很可能是黑洞的天体,主要是基于对环绕在其周围的物质的观测。
法国高等科学研究所的天体物理学家蒂博·达穆尔(Thibault Damour)和德国不莱梅国际大学的谢尔盖·索罗杜金(Sergey Solodukhin)认为这些黑洞天体可能是名为虫洞的结构。
虫洞是连接时空织布中两个不同地方的弯曲通道。如果你将宇宙想象为二维的纸张,虫洞就是连接这张纸片和另一张纸片的“喉咙”通道。在这种情况下,另一张纸片可能是另一个单独的宇宙,拥有自己的恒星、星系和行星。达穆尔和索罗杜金研究了虫洞可能的情形,并惊讶的发现它如此类似于黑洞以至于几乎无法区分两者之间的差别。
霍金辐射
物质环绕虫洞旋转的方式与环绕黑洞是一样的,因为两者扭曲环绕它们的时空的方式是相同的。有人提出利用霍金辐射来区分两者,霍金辐射是指来自黑洞的光和粒子辐射,它们具有能量光谱的特性。但是这种辐射非常微弱以至于它可能被其他源完全湮没,例如宇宙大爆炸后残余的宇宙微波背景辐射,因此观测霍金辐射几乎是不可能的。
另一个可能存在的不同便是,虫洞可能没有黑洞所具有的视界。这意味着物质可以进入虫洞,也可以再次出来。实际上,理论家称有一类虫洞会自我包裹,因此并不会产生另一个宇宙的入口,而是返回到自身的入口。
勇敢者的游戏
即便如此,这也没有一个简单的测试方法。由于虫洞的具体的形状不同,物质跌入虫洞之后可能要花费数十亿年之后才能从里面出来。即使虫洞的形状非常完美,宇宙最古老的虫洞目前也尚未“吐出”任何物质。
看起来似乎只有一条探寻天文学黑洞的途径,那就是勇敢的纵身一跃。这绝对是一个勇敢者的危险游戏,因为如果跳入的是一个黑洞,其强大的重力场将会撕裂我们身体的每一个原子;即便幸运的进入了一个虫洞,内部强大的引力仍然是致命的。
假设你能幸存下来,而虫洞恰好是不对称的,你会发现自己处在另一个宇宙的另一边。还没等你看清楚,这个虫洞也许又把你吸回到所出发的宇宙入口了。
悠悠球运动
“太空船也能做这样的悠悠球运动,” 达穆尔说道,“(但是)如果使用自己的燃料,你就能从虫洞的引力中逃逸”,然后探索另一边的宇宙。
不过在宇宙这一边的朋友也许得等上数十亿年才能再次见到你,因为在虫洞里的穿行时间将会非常漫长。这样的延迟使得在虫洞两边的有效通讯变得几乎不可能。如果能够发现或者构建微观虫洞,这种延迟可能短至几秒钟时间,索罗杜金这样说道,这潜在的支持了双边通讯。
研究黑洞形成和虫洞特性的美国俄勒冈大学尤金分校的斯蒂芬·许(Stephen Hsu),也认为利用观测区分黑洞和虫洞之间差别几乎是不可能的,至少利用目前的科技是不可能实现的。
外来物质
“黑洞最重要的特性就是落入黑洞的物体“有去无回”的临界点,而对此我们目前还无法进行测试。” 斯蒂芬说道。但目前被认为是黑洞的天体也可能的确是黑洞而非虫洞,这种情况也并非不可能。目前存在不少关于黑洞形成的可行情景,例如大质量恒星的坍塌,但有关虫洞是如何形成的则仍是未知数。
虫洞可能与宏观的黑洞有所不同,它需要一些外来的物质保持自身稳定,而这种外来物质是否真实存在又是个未知数。
索罗杜金认为虫洞的形成方式可能与黑洞相差无几,例如都来自于坍塌的恒星。在这种情境下,物理学家一般认为会产生黑洞,但索罗杜金认为量子效应可能会阻止坍缩形成黑洞的过程,转而形成了虫洞。
微观黑洞
索罗杜金称这一机制在更完整的物理学理论下将不可避免,后者统一了重力和量子力学的理论,它是物理学界长久以来的梦想和目标。如果这一理论是正确的,那么以往我们认为会形成黑洞的地方,就可能会形成虫洞。
而这一猜想并不是没有方法对其进行测试,有的物理学家认为未来的粒子加速器实验将能够产生微观黑洞。这种微观黑洞有可能放射出可以计算的霍金辐射,以证明产生的是黑洞而非虫洞。但是如果索罗杜金猜想的是正确的话,那么形成的会是一个微观虫洞,因此将不会产生任何辐射。“通过这样简单的测试就能辨别产生的是黑洞还是虫洞。”
虫洞的另一个优点在于能够解决所谓的黑洞信息悖论。黑洞唯一能够释放出的就是霍金辐射,但这些霍金辐射将如何携带最初落入黑洞天体的原始信息,目前还尚不清楚。这种混乱效应与量子力学相冲突,后者禁止这种信息的丢失。
“从理论上来说,虫洞要比黑洞好的多,因此它不会发生信息丢失。” 索罗杜金说道。由于虫洞没有视界,物体无需转化成霍金辐射就能自动离开虫洞,因此也就不存在信息丢失的问题。